Skip to content

Function to summarize results from TDCM analyses.

Usage

tdcm.summary(
  model,
  num.time.points,
  transition.option = 1,
  classthreshold = 0.5,
  attribute.names = c()
)

Arguments

model

a gdina object returned from the tdcm function.

num.time.points

the number of time points (i.e., measurement/testing occasions), integer \(\ge 2\).

transition.option

option for reporting results. = 1 compares the first time point to the last. = 2 compares the first time point to every other time point. = 3 compares successive time points. Default = 1.

classthreshold

probability threshold for establishing proficiency from examinee posterior probabilities. Default is .50, which maximizes overall classification accuracy. It can be set to a lower value to minimize false negatives (i.e., misclassifying proficient examinees as non-proficient) or set to a higher value to minimize false positives (i.e., misclassifying non-proficient examinees as proficient).

attribute.names

optional vector of attribute names to include in results output.

Value

A list with the following items:

  • $item.parameters: LCDM item parameter estimates from the specified DCM.

  • $growth: proficiency proportions for each time point and each attribute

  • $transition.probabilities: conditional attribute proficiency transition probability matrices

  • $posterior.probabilities: examinee marginal attribute posterior probabilities of proficiency

  • $transition.posteriors: examinee marginal attribute transition posterior probabilities

  • $most.likely.transitions: examinee most likely transitions for each attribute and transition

  • $classifications: examinee classifications determined by the specified threshold applied to the posterior probabilities

  • $reliability: estimated transition reliability metrics for each attribute for the specified transitions. “pt bis” = longitudinal point biserial metric; “info gain” = longitudinal information gain metric; “polychor” = longitudinal tetrachoric metric; “ave max tr” = average maximum transition posterior metric; “P(t>k)” = proportion of examinee marginal attribute transition posteriors greater than k; “wt pt bis” = weighted longitudinal point biserial; “wt info gain” = weighted longitudinal information gain.

  • $att.corr: estimated attribute correlation matrix

  • $model.fit: Several model fit indices and tests are output including item root mean square error of approximation (RMSEA; von Davier, 2005), mean RMSEA, bivariate item fit statistics (Chen et al., 2013), and absolute fit statistics such as mean absolute deviation for observed and expected item correlations (MADcor; DiBello, Roussons, & Stout, 2007), and standardized root mean square root of squared residuals (SRMSR; Maydeu-Olivares, 2013)

Details

Provides a summary of TDCM results including item parameters, attribute posterior probabilities, transition posterior probabilities, classifications, growth, transition probabilities, attribute correlations, several transition reliability metrics, and model fit. Includes longitudinal DCM reliability metrics developed by Schellman and Madison (2021).

References

Chen, J., de la Torre, J. ,& Zhang, Z. (2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50, 123-140.

DiBello, L. V., Roussos, L. A., & Stout, W. F. (2007). Review of cognitively diagnostic assessment and a summary of psychometric models. In C. R. Rao and S. Sinharay (Eds.), Handbook of Statistics, Vol. 26 (pp.979–1030). Amsterdam: Elsevier.

Johnson, M. S., & Sinharay, S. (2020). The reliability of the posterior probability of skill attainment in diagnostic classification models. Journal of Educational Measurement, 47(1), 5 – 31.

Madison, M. J. (2019). Reliably assessing growth with longitudinal diagnostic classification models. Educational Measurement: Issues and Practice, 38(2), 68-78.

Maydeu-Olivares, A. (2013). Goodness-of-fit assessment of item response theory models (with discussion). Measurement: Interdisciplinary Research and Perspectives, 11, 71-137.

Schellman, M., & Madison, M. J. (2021, July). Estimating the reliability of skill transition in longitudinal DCMs. Paper presented at the 2021 International Meeting of the Psychometric Society.

Templin, J., & Bradshaw, L. (2013). Measuring the reliability of diagnostic classification model examinee estimates. Journal of Classification, 30, 251-275.

von Davier M. (2008). A general diagnostic model applied to language testing data. The British journal of mathematical and statistical psychology, 61(2), 287–307.

Examples

# \donttest{
## Example 1: T = 2, A = 4
data(data.tdcm01, package = "TDCM")
dat1 <- data.tdcm01$data
qmat1 <- data.tdcm01$q.matrix

# estimate TDCM with invariance assumed and full LCDM
m1 <- TDCM::tdcm(dat1, qmat1, num.time.points = 2, invariance = TRUE, rule = "GDINA")

# summarize results with tdcm.summary function
results1 <- TDCM::tdcm.summary(m1, num.time.points = 2)
results1$item.parameters
#>         λ0     λ1,1  λ1,2  λ1,3  λ1,4  λ2,12 λ2,13 λ2,14 λ2,23 λ2,24
#> Item 1  -1.923 2.616   --    --    --    --    --    --    --    -- 
#> Item 2  -2.071 2.506   --    --    --    --    --    --    --    -- 
#> Item 3  -1.936 2.506   --    --    --    --    --    --    --    -- 
#> Item 4  -1.891 1.051 1.471   --    --  1.115   --    --    --    -- 
#> Item 5  -2.157 1.705   --  1.732   --    --  0.835   --    --    -- 
#> Item 6  -1.841   --  2.175   --    --    --    --    --    --    -- 
#> Item 7  -1.841   --  2.272   --    --    --    --    --    --    -- 
#> Item 8  -1.965   --  2.475   --    --    --    --    --    --    -- 
#> Item 9  -2.029   --  1.242 1.531   --    --    --    --  1.628   -- 
#> Item 10 -2.004   --  1.921   --  1.239   --    --    --    --  0.999
#> Item 11 -1.851   --    --  2.349   --    --    --    --    --    -- 
#> Item 12 -2.045   --    --  2.566   --    --    --    --    --    -- 
#> Item 13 -2.083   --    --  2.576   --    --    --    --    --    -- 
#> Item 14 -2.125   --    --  1.739 2.104   --    --    --    --    -- 
#> Item 15 -1.805 0.777   --  1.31    --    --  1.896   --    --    -- 
#> Item 16 -2.156   --    --    --  2.736   --    --    --    --    -- 
#> Item 17 -2.089   --    --    --  2.679   --    --    --    --    -- 
#> Item 18 -2.087   --    --    --  2.476   --    --    --    --    -- 
#> Item 19 -2.11  2.219   --    --  1.46    --    --  0.558   --    -- 
#> Item 20 -2.047   --  2.408   --  1.49    --    --    --    --  0.154
#>         λ2,34
#> Item 1    -- 
#> Item 2    -- 
#> Item 3    -- 
#> Item 4    -- 
#> Item 5    -- 
#> Item 6    -- 
#> Item 7    -- 
#> Item 8    -- 
#> Item 9    -- 
#> Item 10   -- 
#> Item 11   -- 
#> Item 12   -- 
#> Item 13   -- 
#> Item 14 0.493
#> Item 15   -- 
#> Item 16   -- 
#> Item 17   -- 
#> Item 18   -- 
#> Item 19   -- 
#> Item 20   -- 
results1$growth
#>             T1[1] T2[1]
#> Attribute 1 0.201 0.372
#> Attribute 2 0.327 0.492
#> Attribute 3 0.397 0.573
#> Attribute 4 0.252 0.696
results1$transition.probabilities
#> , , Attribute 1: Time 1 to Time 2
#> 
#>        T2 [0] T2 [1]
#> T1 [0]  0.678  0.322
#> T1 [1]  0.432  0.568
#> 
#> , , Attribute 2: Time 1 to Time 2
#> 
#>        T2 [0] T2 [1]
#> T1 [0]  0.578  0.422
#> T1 [1]  0.363  0.637
#> 
#> , , Attribute 3: Time 1 to Time 2
#> 
#>        T2 [0] T2 [1]
#> T1 [0]   0.55   0.45
#> T1 [1]   0.24   0.76
#> 
#> , , Attribute 4: Time 1 to Time 2
#> 
#>        T2 [0] T2 [1]
#> T1 [0]  0.365  0.635
#> T1 [1]  0.123  0.877
#> 
results1$reliability
#>             pt bis info gain polychor ave max tr P(t>.6) P(t>.7) P(t>.8)
#> Attribute 1  0.788     0.511    0.925      0.922   0.964   0.929   0.856
#> Attribute 2  0.769     0.546    0.905      0.896   0.923   0.868   0.821
#> Attribute 3  0.728     0.527    0.905      0.878   0.918   0.856   0.750
#> Attribute 4  0.715     0.485    0.891      0.899   0.936   0.883   0.801
#>             P(t>.9) wt pt bis wt info gain
#> Attribute 1   0.747     0.822        0.591
#> Attribute 2   0.694     0.792        0.581
#> Attribute 3   0.625     0.757        0.568
#> Attribute 4   0.709     0.772        0.585
head(results1$most.likely.transitions)
#>   Attribute 1: T1 to T2 Attribute 2: T1 to T2 Attribute 3: T1 to T2
#> 1     01                    10                    01               
#> 2     10                    00                    10               
#> 3     00                    11                    01               
#> 4     00                    01                    01               
#> 5     00                    01                    01               
#> 6     00                    10                    01               
#>   Attribute 4: T1 to T2
#> 1     11               
#> 2     11               
#> 3     10               
#> 4     01               
#> 5     11               
#> 6     01               
results1$model.fit$Item.RMSEA
#>    Item 1    Item 2    Item 3    Item 4    Item 5    Item 6    Item 7 
#> 0.1072683 0.1273641 0.1082175 0.1191112 0.1255691 0.1401920 0.1357562 
#>    Item 8    Item 9   Item 10   Item 11   Item 12   Item 13   Item 14 
#> 0.1130181 0.1208428 0.1135816 0.1318266 0.1110083 0.1104637 0.1190979 
#>   Item 15   Item 16   Item 17   Item 18   Item 19   Item 20   Item 21 
#> 0.1274363 0.1244858 0.1133979 0.1235323 0.1142053 0.1400732 0.1122910 
#>   Item 22   Item 23   Item 24   Item 25   Item 26   Item 27   Item 28 
#> 0.1072758 0.1246946 0.1223008 0.1262111 0.1286012 0.1267738 0.1105200 
#>   Item 29   Item 30   Item 31   Item 32   Item 33   Item 34   Item 35 
#> 0.1164483 0.1158832 0.1303099 0.1289143 0.1225251 0.1096947 0.1357179 
#>   Item 36   Item 37   Item 38   Item 39   Item 40 
#> 0.1320643 0.1304714 0.1168578 0.1116256 0.1156059 
# }